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Abstract

The problem of the pure bending of a circular cylinder is solved within the linear couple-stress theory. The
solution is obtained by correcting the classical solution with a solution in plane strain within the section. A
generalized formula is thus derived for the bending inertia of a circular cross-section. # 1999 Elsevier Science Ltd.

All rights reserved.

1. Introduction

The linear couple-stress theory is the simplest possible type of generalisation of the classical
continuum theory: by allowing for possible e�ects of the rotation-gradient in addition to the strain, the
number of elastic constants for an isotropic material is increased from two to four. It is a special case of
the Cosserat (or micropolar) theory in which the micro-rotation ®eld is treated as independent variables
so that six elastic coe�cients are required. Further generalisation may be achieved by allowing for
possible e�ects of more general and higher strain-gradient, with or without independent micro-
displacement ®eld: the ®rst strain-gradient theory requires seven elastic constants (Mindlin and Eshel,
1968; Germain, 1973), eighteen if the micro-displacement ®eld is treated as independent variable
(Mindlin, 1964), as much as the second strain-gradient theory does (Mindlin, 1965).

Within the framework of the linear couple-stress theory, a series of well-known classical problems of
elasticity can be solved in a more or less simple manner (Mindlin and Tiersten, 1962; Mindlin, 1963;
Koiter, 1964; Sokolowski, 1970). The closed-form solutions derived for problems such as the torsion of
circular cylinders, the cylindrical bending of plates or the stress concentrations around circular holes,
exhibit fundamental di�erences with respect to the classical solutions. In particular, they may explain/
predict the so-called size-e�ect whereby the smaller is the size of the specimen, the stronger is its
response.
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The purpose of this paper is to solve the problem of the pure bending of a circular cylinder, thus
allowing for an ulterior assessment of the practical signi®cance of the theory. After recalling the
fundamental equations of the linear couple-stress theory, the problem of the pure bending of a circular
cylinder is formulated and solved in two steps. First, the classical solution is injected into the system of
equations and is found to violate one boundary condition. Then, a corrective solution is sought in plane
strain within the section. From the complete solution, a generalized formula is ®nally derived for the
bending inertia of a circular cross-section.

2. Fundamental equations of the linear couple-stress theory

In the linear couple-stress theory, the work of the internal forces is assumed to depend on the
rotation-gradient, in addition to the strain (Mindlin and Tiersten, 1962; Mindlin, 1963; Koiter, 1964;
Sokolowski, 1970). Instead of merely recalling the fundamental equations, the author felt it appropriate
to rederive them through the principle of virtual work following the presentation of Germain (1973),
that is starting from the expression of the work of the internal forces. The fundamental equations, in
particular the boundary conditions, are thus obtained without any ambiguity. Furthermore, neither the
skew-symmetric part of the stress tensor nor the trace of the couple-stress tensor need to be introduced.
At the end, the constitutive equations are recalled in the case of a linear elastic isotropic medium.

2.1. Kinematics

The kinematic variables to be taken into account within the linear couple-stress theory are the strain eee
and the gradient of rotation kkk:

eij � 1
2�uj,i � ui,j � � eji

kij � 1
2ejklul,ki �kii � 0� �1�

where e is the alternator. Other relevant quantities are the rotation tensor ooo and the rotation vector w:

o ij � 1
2�uj,i ÿ ui,j � � ÿo ji

wi � 1
2eijkuk,j �2�

Eliminating the displacement u in (1) and (2), the following relations are obtained:

o ij � eijkwk

wi � 1
2eijko jk

kij � wj,i � 1
2ejklokl,i �3�

It should be mentioned that the de®nition of the gradient of rotation is not unique in the literature: in
(1), the de®nition of Mindlin and Eshel (1968) has been chosen but some other authors (Koiter, 1964;
Sokolowski, 1970; Germain, 1973) use the conjugate of kij instead.
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2.2. Work of the internal forces

The virtual work of the internal forces W�i � is assumed to depend on the strain eee and on the gradient
of rotation kkk, so that the associated stress quantities are the classical Cauchy stress tensor sss (symmetric)
and the so-called couple-stress tensor mmm (deviatoric):

W�i� � ÿ
�
O

ÿ
sijeij � mijkij

�
dv �4�

In the presentation of Koiter (1964) also followed by Sokolowski (1970), expression (4) is not assumed a
priori but derived from the Cosserat equations of equilibrium expressed in terms of the full (non-
symmetric) stress tensor and the full (non-deviatoric) couple stress tensor. As a matter of fact, it may be
shown that neither the skew-symmetric part of the stress tensor nor the ®rst invariant of the couple-
stress tensor contribute to W�i �.

Substituting eee and kkk from (1) and using the divergence theorem, W�i � may be transformed into

W�i� � ÿ
�
O

�
sijuj,i � 1

2
ejklmijul,ki

�
dv

�
�
O

�
sij,iuj ÿ �sijuj �,i�

1

2
ejklmij,iul,k ÿ

1

2
ejkl�mijul,k �,i

�
dv

�
�
O

�
sij,iuj ÿ �sijuj �,iÿ

1

2
ejklmij,ikul �

1

2
ejkl�mij,iul �,kÿ

1

2
ejkl�mijul,k �,i

�
dv

�
�
O

�
sij,iuj ÿ 1

2
ejklmij,ikul

�
dv�

�
@O

�
ÿ sijujni � 1

2
ejklmij,iulnk

�
dsÿ

�
@O

1

2
ejklmijul,kni ds �5�

where n is the outward unit normal to the bounding surface @O. Introducing the component of the
rotation vector tangent to @O, i.e.

~wj � wj ÿ wpnpnj � 1
2ejklul,k ÿ 1

2epklul,knpnj �6�

and the component of mijni normal to @O

mnn � mijninj �7�

the last integral in the right-hand-side of (5) becomes

ÿ
�
@O

1

2
ejklmijul,kni ds � ÿ

�
@O

�
�mijni ÿ mnnnj � ~wj � 1

2
epklul,knpnjmijni

�
ds

� ÿ
�
@O

�
�mijni ÿ mnnnj � ~wj � 1

2
epklmnnul,knp

�
ds

� ÿ
�
@O

�
�mijni ÿ mnnnj � ~wj ÿ 1

2
epklmnn,kulnp

�
dsÿ

�
@O

1

2
epkl�mnnul �,knp ds �8�
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Making use of the Stokes theorem on a surface S having a closed boundary @S,�
S

eplkVl,knp ds �
�
@S

Vjtj dl �9�

the last term in the right-hand-side of (8) is transformed into

ÿ
�
@O

1

2
eplk�mnnul �,knp ds � ÿ

�
G

1

2 ��mnnuj ��tj dl � ÿ
�
G

1

2 ��mnn ��ujtj dl �10�

Here, G is an edge of @O at which intersect two surfaces of di�erent outward unit normals n� and nÿ.
Furthermore, t is the unit vector tangent to G, oriented positively with respect to n�, i.e. such that the
scalar triple product �n� ^ nÿ� � t is positive. The double brackets indicate the jump of the enclosed
quantity across the edge, i.e.

��mnn �� � mijn
�
i n
�
j ÿ mijn

ÿ
i n
ÿ
j �11�

Substituting (8) and (10) into (5) leads to

W�i� �
�
O

�
sij,i ÿ 1

2
eikjmpi,pk

�
uj dvÿ

�
@O

�
sij � 1

2
eijk�mpk,p ÿ mnn,k �

�
niuj ds

ÿ
�
@O
�mijni ÿ mnnnj � ~wj dsÿ

�
G

1

2 ��mnn ��tjuj dl �12�

2.3. Work of the external loads

The external loads are of two types: the body loads and the contact loads. The former are composed
of body forces f and body couples c so that their virtual work is

W�b� �
�
O

ÿ
fjuj � cjwj

�
dv �13�

The latter are composed of surface forces p and surface couples q on @O and line forces P on G, so that
their virtual work is

W�c� �
�
@O
�pjuj � qjwj � ds�

�
G
Pjuj dl �14�

Here, the allowance for line forces is motivated by the existence of the line integral in (12). Substituting
w from (1) and using the divergence theorem, (13) may be transformed into

W�b� �
�
O

�
fjuj � 1

2
ejklcjul,k

�
dv

�
�
O

�
fjuj ÿ 1

2
ejklcj,kul � 1

2
ejkl�cjul �,k

�
dv

�
�
O

�
fj ÿ 1

2
ejpkcp,k

�
uj dv�

�
@O

1

2
ejpkcpnkuj ds �15�
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Decomposing w according to (6), introducing the normal component of q

qn � qini �16�

and using the Stokes theorem, (14) may be transformed into

W�c� �
�
@O

�
pjuj � �qj ÿ qnnj � ~wj � 1

2
epklnpnjqjul,k

�
ds�

�
G
Pjuj dl

�
�
@O

�
pjuj � �qj ÿ qnnj � ~wj � 1

2
epklnpqnul,k

�
ds�

�
G
Pjuj dl

�
�
@O

�
pjuj � �qj ÿ qnnj � ~wj ÿ 1

2
epklqn,kulnp � 1

2
epkl�qnul �,knp

�
ds�

�
G
Pjuj dl

�
�
@O

��
pj � 1

2
ejkpqn,knp

�
uj � �qj ÿ qnnj � ~wj

�
ds�

�
G

�
Pj � 1

2 ��qn ��tj
�
uj dl �17�

By introducing the following reduced contact loads

�pi � pi � 1
2eijkqn,jnk

�qi � qi ÿ qnni

�Pi � Pi � 1
2 ��qn ��ti �18�

W�c� is simply written as

W�c� �
�
@O

ÿ
�p juj � �qj ~wj

�
ds�

�
G

�Pjuj dl �19�

At each point of @O, the contact loads can thus be represented by only ®ve independent quantities, the
three componentss of �p and the two components of the tangential vector �q . As a matter of fact, the
normal component of the surface couple qn does not contribute directly to W(c ) but indirectly through
the reduced line forces and the tangential components of the reduced surface forces. This is due to the
fact that the kinematic counterpart of qn, i.e. the normal component of the rotation, is fully speci®ed by
the distribution of tangential displacements over the boundary. As a consequence, the number of
boundary conditions holding on a smooth surface is not six but only ®ve. As mentioned by Koiter
(1964), a very similar situation is encountered in the bending theory of plates where the number of
boundary conditions are reduced from three to two.

Eqns (14) and (19) show that the reduced contact loads are equivalent to the original ones in an
energetic sense. Consequently, the resultant R and the moment resultant M of the loads acting on a
portion S of the boundary may be computed indi�erently from the original or reduced loads. Indeed, R
and M are, by de®nition, the dual quantities of the translation U and the rotation W in the work of the
loads during a rigid displacement of S. Introducing this rigid displacement i.e.

uj � Uj � ejklWkxl �20�
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in (14) or (19), and reducing the integral to S and to its edges GS, one gets

W �
��

S

pj ds�
�
GS

Pj dl

�
Ui �

��
S

eijkx jpk ds�
�
Gs

eijkx jPk dl�
�
S

qi ds

�
Wi

�
��

S

�pj ds�
�
GS

�Pj dl

�
Ui �

��
S

eijkx j �pk ds�
�
GS

eijkx j
�Pk dl�

�
S

�qi ds

�
Wi �21�

so that

Ri �
�
S

pj ds�
�
GS

Pj dl �
�
S

�pj ds�
�
GS

�Pj dl

Mi �
�
S

eijkx jpk ds�
�
GS

eijkx jPk dl�
�
S

qi ds �
�
S

eijkx j �pk ds�
�
GS

eijkx j
�Pk dl�

�
S

�q i ds �22�

2.4. Equilibrium equations and boundary conditions in stresses

The principle of the virtual work ensures that W�i � �W�b� �W�c� is zero for any virtual displacement
u. From (12), (15) and (19), we get�

O

�
sij,i ÿ 1

2
eijk
ÿ
mpk,pi � ck,i

�� fj

�
uj dv�

�
@O

��
ÿ sij � 1

2
eijk
ÿ
mpk,p � ck ÿ mnn,k

��
ni � �pj

�
uj ds

�
�
@O

ÿÿ mijni � mnnnj � �qj

�
~wj ds�

�
G

�
ÿ 1

2 ��mnn ��tj �
�Pj

�
uj dl � 0 �23�

The four integrands must vanish separately, so that the equilibrium equations are

sij,i ÿ 1
2eijk

ÿ
mpk,pi � ck,i

�� fj � 0 �24�

in O and the boundary conditions expressed in stresses are�
sij ÿ 1

2eijk
ÿ
mpk,p � ck ÿ mnn,k

��
ni � �pj

mijni ÿ mnnnj � �qj �25�

and dO and

1
2 ��mnn ��tj � �Pj �26�

along G. As anticipated, the boundary condition (25) contains only ®ve equations.
From (25) and (26), it follows that the reduced contact loads on the surface, whether on the boundary

or in the interior of O, are immediately retrievable from the stresses and couple-stresses.
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2.5. Constitutive equations

For a linear isotropic elastic material, the potential energy-density is given by the quadratic form

W �W�eij, kij � � E

2�1� v�
�
eijeij � v

1ÿ 2v
eiiejj � 2l2�kijkij � Zkijkji �

�
�27�

where, along with the classical Young's modulus E and Poisson's ratio v, appear two additional material
parameters: l homogeneous to a length and Z dimensionless. From the condition of positive de®niteness
of W in the neighbourhood of the neutral state, it follows that

E > 0, l2 > 0, ÿ 1< v< 0:5 and ÿ 1< Z< 1 �28�
so that l is indeed a length for being real and positive.

The stress±strain relations read

sij � @W

@eij
�)sij � E

1� v

�
eij � v

1ÿ 2v
ekkdij

�

mij �
@W

@kij
�)mij �

2El2

1� v
�kij � Zkji � �29�

and their inversion is

eij � 1� v

E
sij ÿ v

E
skkdij

kij � 1� v

2El2
ÿ
1ÿ Z2

� �mij ÿ Zmji � �30�

3. Solution for pure bending

Since the couple-stress theory is a generalization of the classical continuum theory, the solution of the
pure bending of a circular cross-section beam is sought as a generalization of the classical one.
Speci®cally, to the classical solution will be superposed a corrective solution in plane strain within the
cross-section. A cylindrical coordinate system will be used throughout, except for the calculation of the
resultant and moment resultant on the section, which will be performed in a Cartesian coordinate
system. Both coordinate systems are shown on Fig. 1 along with the bending axis.

3.1. Statement of the problem

The system of equations to be solved is composed of four groups of relations: the geometric relations
(1), the stress±strain relations (29), the equilibrium eqns (24) and the boundary conditions (25) and (26).
The last two groups of equations are now speci®ed in the case of pure bending of a circular cylinder.

Since there are neither body forces nor body couples, the equilibrium equations reduce to

sij,i ÿ 1
2eijkmpk,pi � 0 �31�
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Since the lateral surface �n � er, and r � R� is free of forces and couples, the reduced surface loads are
zero and the boundary conditions read

srj ÿ 1
2erjk�mpk,p ÿ mrr,k � � 0 �32�

and

mrj ÿ mrrdjr � 0 �33�

On the cross-section �n � ez�, the reduced surface forces and couples are given by

�pj � szj ÿ 1
2ezjk�mpk,p ÿ mzz,k �

�qj � mzj ÿ mzzdjz �34�

On the edge of the cross-section �n� � ez, nÿ � er, t � ey and r � R�, the reduced line forces are

�Pj � 1
2�mzz ÿ mrr �djy �35�

From (34) and (35), it follows that the resultant and moment resultant on the cross-section are

Rx �
�R
0

�2p
0

ÿ
�pr cos yÿ �py sin y

�
r dr dyÿ

�2p
0

�Py sin yR dy

Ry �
�R
0

�2p
0

ÿ
�pr sin y� �py cos y

�
r dr dy�

�2p
0

�Py cos yR dy

Rz �
�R
0

�2p
0

�pzr dr dy

Fig. 1. Pure bending along ey of a circular cross-section beam.
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Mx �
�R
0

�2p
0

ÿ
�qr cos yÿ �qy sin y

�
r dr dy�

�R
0

�2p
0

�pz sin yr2 dr dy

My �
�R
0

�2p
0

ÿ
�qr sin y� �qy cos y

�
r dr dyÿ

�R
0

�2p
0

�pz cos yr2 dr dy

Mz �
�R
0

�2p
0

�pyr
2 dr dy�

�2p
0

�PyR
2 dy �36�

For a state of pure bending around the y-axis, all the above components but My must vanish.

3.2. Classical solution

In cylindrical coordinates, the classical solution for pure bending is given by

ur � w
2

ÿ
vr2 � z2

�
cos y

uy � w
2
�vr2 ÿ z2 � sin y

uz � ÿwrz cos y �37�
where w is the curvature. According to (1), such a displacement ®eld leads to the following strain and
gradient of rotation:

eee � w

24 vr cos y 0 0
0 vr cos y 0
0 0 ÿr cos y

35, kkk � w

24 0 0 v sin y
0 0 v cos y

sin y cos y 0

35 �38�

The associated stresses and couple-stresses are derived through the constitutive eqns (29):

sss � Ew

24 0 0 0
0 0 0
0 0 ÿr cos y

35, mmm � w
2El2

1� v

24 0 0 �v� Z� sin y
0 0 �v� Z� cos y

�1� vZ� sin y �1� vZ� cos y 0

35 �39�

The divergence of the (non symmetric) couple-stress tensor, i.e.

mpk,p �

26666666664

@mrr
@r
� 1

r

�
mrr ÿ myy �

@myr
@y

�
� @mzr

@z

@mry
@r
� 1

r

�
mry � myr �

@myy
@y

�
� @mzy

@z

@mrz
@r
� 1

r

�
mrz �

@myz
@y

�
� @mzz

@z

37777777775
�40�

and the component mrr turn out to vanish. Thus the equilibrium eqns (31) and the ®rst boundary
conditions on the lateral surface (32) reduce to their classical expressions and are therefore satis®ed by
the classical stresses sss. Unfortunately, the second boundary conditions on the lateral surface (33) are
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violated unless Z � ÿv since

mrj ÿ mrrdjr � mrj � 2wEl2
v� Z
1� v

sin ydzj �41�

Contrarily to the case of torsion (Koiter, 1964; Sokolowski, 1970), the classical solution needs here a
modi®cation in order to comply with the couple-stress theory. The same situation is encountered for the
pure bending of a rectangular cross-section as quoted by Koiter (1964). As a matter of fact, this author
did not attempt to obtain the exact solution but derived upper and lower bounds of the ¯exural rigidity.

3.3. Additional solution in plane strain

The additional solution is sought in plane strain in the section perpendicular to the z-axis, with the
aid of the generalized Airy stress functions introduced by Mindlin (1963). This method is most e�ective
here because the problem to be solved is formulated in stresses and the determination of displacements
could be avoided. However, for the sake of completeness, the displacements will also be derived.

In a state of plane strain in the plane perpendicular to the z-axis, the stresses and couple-stresses
solution of eqns (1), (29) and (31) are given by

srr � 1

r

@f
@r
� 1

r2
@2f

@y2
ÿ 1

r

@2c
@r@y

� 1

r2
@c
@y

syy � @2f
@r2
� 1

r

@ 2c
@r@y

ÿ 1

r2
@c
@y

szz � v

�
1

r

@f
@r
� 1

r2
@2f

@y2
� @

2f
@r2

�

sry � syr � 1

r2
@f
@y
ÿ 1

r

@2f
@r@y

� 1

2

�
@2c
@r2
ÿ 1

r

@c
@r
ÿ 1

r2
@2c

@y2

�

srz � szr � syz � szy � 0

mrz �
@c
@r

myz �
1

r

@c
@y

mzr � Z
@c
@r

mzy � Z
1

r

@c
@y

mrr � myy � mry � myr � mzz � 0 �42�
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where f and c are generalized Airy stress functions related to each other by

@

@r

ÿ
cÿ l2r2c

�
� ÿ2�1ÿ v�l2 1

r

@

@y
r2f

1

r

@

@y

ÿ
cÿ l2r2c

�
� 2�1ÿ v�l2 @

@r
r2f �43�

The derivation of the stress functions satisfying (43) is facilitated by noting that they necessarily satisfy

r2r2f � 0

r2cÿ l2r2r2c � 0 �44�
Thus, for the sought additional solution, we take the following stress functions

f � Ar3 cos y

c �
�
BI1

�
r

l

�
� Cr

�
sin y �45�

where A, B and C are three constants and In is the modi®ed Bessel function of the ®rst kind and order
n. It is reminded that:

d

dr
I1

�
r

l

�
� 1

r
I1

�
r

l

�
� 1

l
I2

�
r

l

�

d 2

dr2
I1

�
r

l

�
� 1

l2
I1

�
r

l

�
ÿ 1

rl
I2

�
r

l

�
�46�

Relations (43) are satis®ed if

C � 16�1ÿ v�l2A �47�
From expression (42), the non-vanishing components of the stresses and couple-stresses are

srr �
�
2Arÿ B

rl
I2

�
r

l

��
cos y

syy �
�
6Ar� B

rl
I2

�
r

l

��
cos y

szz � 8Avr cos y

sry � syr �
�
2Ar� B

2rl

�
r

l
I1

�
r

l

�
ÿ 2I2

�
r

l

���
sin y
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mrz �
�
B

r

�
I1

�
r

l

�
� r

l
I2

�
r

l

��
� C

�
sin y

myz �
�
B

r
I1

�
r

l

�
� C

�
cos y

mzr � Z
�
B

r

�
I1

�
r

l

�
� r

l
I2

�
r

l

��
� C

�
sin y

mzy � Z
�
B

r
I1

�
r

l

�
� C

�
cos y �48�

It remains to check the boundary conditions. The divergence of the couple-stress tensor being

mpk,p �
B

l2
I1

�
r

l

�
sin ydzk �49�

and the component mrr being zero, the ®rst boundary condition on the lateral surface (32) reduces to

sry ÿ B

2l2
I1

�
R

l

�
sin y � 0 �50�

and, owing to (48), is satis®ed if

A � B

2R2l
I2

�
R

l

�
�51�

In the second boundary condition on the lateral surface (33), the error (41) introduced by the classical
solution should be removed, so that we obtain

mrj � ÿ2wEl2
v� Z
1� v

sin ydzj �52�

which, owing to (48), is satis®ed if

B

R

�
I1

�
R

l

�
� R

l
I2

�
R

l

��
� C � ÿ2wEl2 v� Z

1� v
�53�

Relations (47), (51) and (53) allow us to determine the constants A, B and C. Putting a � �R=l �, one
gets:

B � ÿ2wER3�v� Z�
�1� v�a�aI1�a� � �8�1ÿ v� � a2�I2�a�

�
A � aI2�a�

2R3
B

C � 8�1ÿ v�I2�a�
aR

B �54�
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The additional solution is thus fully determined in terms of stresses. The corresponding displacements
may be easily derived by integrating the geometric relations (1) with the strain and gradient of rotation
computed from (48) through relations (30). The result is:

ur � 1� v

E

�
�1ÿ 4v�Ar2 ÿ B

r
I1

�
r

l

��
cos y

uy � 1� v

E

�
�5ÿ 4v�Ar2 � B

r

�
I1

�
r

l

�
� r

l
I2

�
r

l

���
sin y

uz � 0 �55�

3.4. Complete solution and bending inertia

The complete solution is the sum of the classical solution (37) and the additional solution in plane
strain (55), i.e. after substitution of A, B and C according to (54),

ur � w

8><>:
"
v

2
ÿ �v� Z��1ÿ 4v�I2�a�

aI1�a� � �8�1ÿ v� � a2 �I2�a�

#
r2 �

2�v� Z�R2 l

r
I1

�
r

l

�
aI1�a� � �8�1ÿ v� � a2�I2�a� �

z2

2

9>=>; cos y

uy � w

8><>:
"
v

2
ÿ �v� Z��5ÿ 4v�I2�a�

aI1�a� � �8�1ÿ v� � a2�I2�a�

#
r2 ÿ

2�v� Z�R2

�
l

r
I1

�
r

l

�
� I2

�
r

l

��
aI1�a� � �8�1ÿ v� � a2�I2�a� ÿ

z2

2

9>=>; sin y

uz � ÿwrz cos y �56�
The stresses and couple-stresses being obtained by the summation of (39) and (48), the reduced loads
Åp , Åq and ÅP on the cross-section may be now computed according to formulae (34) and (35). Taking into
account that the components mzz and mrr are zero and that the divergence of the couple stress tensor is
still given by eqn (49), the non-vanishing components of the reduced loads are:

�pz � �8Avÿ Ew�r cos y

�qr �
�
2wEl2

1� vZ
1� v

� Z
B

r

�
I1

�
r

l

�
� r

l
I2

�
r

l

��
� ZC

�
sin y

�qy �
�
2wEl2

1� vZ
1� v

� Z
B

r
I1

�
r

l

�
� ZC

�
cos y �57�

Substituting (57) into (36) and performing the required integrations, it turns out that the only non-
vanishing component is My:

My �
�
2wEl2

1� vZ
1� v

� ZC
�
pR2 � ZBI1�a�pR� �Ewÿ 8Av�pR

4

4
�58�
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Substituting the values of the constants A, B and C from (54), one ®nally gets

My � wEpR4

4

(
1� 8

ÿ
1ÿ Z2

�
a2�1� v� �

8�v� Z�2I2�a�
�1� v��aI1�a� � �8�1ÿ v� � a2�I2�a�

�) �59�

It is recalled that the classical bending inertia is Ic � �pR4=4�. Then the new one is written as

I � Ic

(
1� 8

ÿ
1ÿ Z2

�
a2�1� v� �

8�v� Z�2I2�a�
�1� v��aI1�a� � �8�1ÿ v� � a2�I2�a�

	) �60�

This formula is a generalization of the classical one: when l4 0, that is when a4 �1, both functions
I1�a� and I2�a� are equivalent to �ea= ��������

epa
p � so that

I0Ic

"
1� 8

ÿ
1ÿ Z2

�
a2�1� v� �

8�v� Z�2
a2�1� v�

#
� Ic

"
1� 8

1ÿ Z2 � �v� Z�2
1� v

�
l

R

�2
#

�61�

The asymptotic expression (61) proves that the classical bending inertia is retrieved when l4 0.
The new bending inertia is always larger than the classical one, provided that conditions (28) are

satis®ed. In particular, when Z � ÿv, the complete solution reduces to the classical one and the formula
(60) takes a particularly simple expression

I � Ic

�
1� 8�1ÿ v�

a2

�
�62�

Considering that, in polycrystalline metal or granular material, l is probably of the order of the
dimension of the crystals or grains, the ratio a � R=l cannot take very small values. In Fig. 2, the
variations of I=Ic are plotted against Z and a, for v � 0:3. In Fig. 3, they are plotted against Z and v, for
a � 4. In Fig. 4, the variations of I=Ic are plotted against Z, for v � 0:3 and a � 4, 5, 10, 20, 50. In
practice, the in¯uence of the couple-stresses diminished rapidly as a increases: independently of vr0 and
Z, the relative di�erence between I and Ic is less than 3% as soon as a is greater than 20.

Fig. 2. Bending inertia of a circular cross-section for v � 0:3: variation with Z and a.
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The linear couple-stress theory might therefore be checked by performing four point bending tests on
circular bars of various (possible small) radii: the bending rigidity EI is then the ratio of the moment
over the curvature between the load points, i.e. EI � PLd 2=2Df is the di�erence between the de¯ections
of the mid-point and the point under the force P (Fig. 5). If formula (60) holds true, the ratio EI=R4

should not be constant but should increase for decreasing values of the radius.

4. Conclusion

The complete solution for the pure bending of a circular cylinder has been derived within the couple-
stress theory where only the gradient of rotation is taken into account. The recalculation of the bending

Fig. 3. Bending inertia of a circular cross-section for a � 4: variation with v and Z.

Fig. 4. Bending inertial of a circular cross-section for v � 0:3 and a � 4,5,10,20,50: variation with Z.
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inertia of a circular cross-section results in higher values than those accepted before, especially when the
ratio of the radius of the beam to the characteristic material length l is lower than 20.
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